博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
二叉树前序、中序、后序遍历相互求法
阅读量:5895 次
发布时间:2019-06-19

本文共 3185 字,大约阅读时间需要 10 分钟。

今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。

首先,我们看看前序、中序、后序遍历的特性:  前序遍历:      1.访问根节点      2.前序遍历左子树      3.前序遍历右子树  中序遍历:      1.中序遍历左子树      2.访问根节点      3.中序遍历右子树  后序遍历:      1.后序遍历左子树      2.后序遍历右子树      3.访问根节点

一、已知前序、中序遍历,求后序遍历

例:

前序遍历:         GDAFEMHZ

中序遍历:         ADEFGHMZ

画树求法: 第一步,根据前序遍历的特点,我们知道根结点为G

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

 第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

编程求法:(依据上面的思路,写递归程序)

1 #include 
2 #include
3 #include
4 5 struct TreeNode 6 { 7 struct TreeNode* left; 8 struct TreeNode* right; 9 char elem;10 };11 12 void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)13 {14 if(length == 0)15 {16 //cout<<"invalid length";17 return;18 }19 TreeNode* node = new TreeNode;//Noice that [new] should be written out.20 node->elem = *preorder;21 int rootIndex = 0;22 for(;rootIndex < length; rootIndex++)23 {24 if(inorder[rootIndex] == *preorder)25 break;26 }27 //Left28 BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);29 //Right30 BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));31 cout<
elem<

输出的结果为:AEFDHZMG

二、已知中序和后序遍历,求前序遍历

依然是上面的题,这次我们只给出中序和后序遍历:

中序遍历:       ADEFGHMZ

后序遍历:       AEFDHZMG

画树求法: 第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。
第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。
第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前后序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。
第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

这样,我们就可以画出二叉树的形状,如上图所示,这里就不再赘述。

那么,前序遍历:         GDAFEMHZ

编程求法:(并且验证我们的结果是否正确)

#include 
#include
#include
struct TreeNode{ struct TreeNode* left; struct TreeNode* right; char elem;};TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length){ if(length == 0) { return NULL; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *(aftorder+length-1); std::cout<
elem<
left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex); node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1)); return node;}int main(int argc, char** argv){ char* af="AEFDHZMG"; char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, af, 8); printf("\n"); return 0;}

输出结果:GDAFEMHZ

转载于:https://www.cnblogs.com/wuhezhi/p/4833889.html

你可能感兴趣的文章
android OTA差分包的生成方法
查看>>
恢复/boot下initramfrs文件
查看>>
oracle介质恢复和实例恢复的异同
查看>>
Python学习日记---集合
查看>>
PHP二进制与字符串之间的相互转换
查看>>
windowns 添加路由
查看>>
【物联网智能网关-03】GPRS模块中文短信收发
查看>>
读了这篇文章 AIX误删除数据的恢复将变得非常简单
查看>>
Oracle数据库误删除数据3种恢复语句
查看>>
浅析开源数据库MySQL架构
查看>>
软件测试的基本知识
查看>>
LNMP架构搭建
查看>>
Forrester:2017年度安全分析平台厂商评估(Forrester Wave)
查看>>
oracle基本命令随笔(2)
查看>>
不安装Oracle客户端也能使用PL/SQL
查看>>
WebBuilder7 在Linux、Tomcat、MySQL下配置注意事项
查看>>
word转html(一)
查看>>
我的友情链接
查看>>
如何高效进行OA系统选型
查看>>
很奇怪的问题。点击button会自动刷新页面?
查看>>